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Abstract
Lie point symmetries of a system of stochastic differential equations (SDEs)
with diffusion matrices of full rank are considered. It is proved that the maximal
dimension of a symmetry group admitted by a system of n SDEs is n + 2. In
addition, such systems cannot admit symmetry operators whose coefficients are
proportional to a nonconstant coefficient of proportionality. These results are
applied to compute the Lie group classification of a system of two SDEs. The
classification is obtained with the help of non-equivalent realizations of real
Lie algebras by fiber-preserving vector fields in 1 + 2 variables. Possibilities of
using symmetries for integration of SDEs by quadratures are discussed.

PACS numbers: 02.20.Sv, 02.30.Hq, 02.50.Ey

1. Introduction

The Lie group theory of differential equations is well understood [1–3]. It studies
transformations by taking solutions of differential equations into other solutions of the same
equations. Now this theory is a very general and useful tool for finding analytical solutions of
large classes of differential equations.

Recently there appeared applications of Lie group theory to stochastic differential
equations (SDEs). First, restricted cases of point transformations were considered [4–7].
Then, the theory for general point transformations was developed [8–12]. In the latter case
the transformation of the Brownian motion needs to be more thoroughly specified.

In this paper we consider Lie point symmetries of systems of SDEs with diffusion matrices
of full rank. For systems of n SDEs it is proved that the admitted symmetry group can be at
most n+ 2 dimensional. The maximal dimension of the admitted symmetry group is achieved,
for example, by systems with constant drift and diffusion coefficients. It is also shown that such
systems cannot admit symmetry operators whose coefficients are proportional to a nonconstant
coefficient of proportionality. These results can be used to carry out Lie group classifications.
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The Lie group classification of a scalar stochastic ordinary differential equation (ODE)
with one-dimensional Brownian motion was presented in [13]. The admitted symmetry group
can be zero, one, two or three dimensional. To obtain this group classification a direct method
was used. First, the SDE was simplified under an assumption that there exists one symmetry
admitted by the equation. Then, all particular cases leading to the existence of additional
symmetries were identified. This approach turns out to be too difficult for systems of SDEs.

Another possibility is to start from Lie algebras, which are known for low-dimensional
cases, find their realizations by vector fields and obtain SDEs which admit these vector fields as
symmetries. This method is used in the present paper to find the Lie point group classification
of a system of two SDEs. In this case the symmetries are given by fiber-preserving vector
fields in 1 + 2 dimensions.

As an application we consider the use of symmetries for integration of SDEs by
quadratures. We obtain the classical theorems for symmetries acting in the space of dependent
variables.

Symmetries of SDEs can be useful to find symmetries of the Fokker–Planck (FP) equation
[7, 9]. In the case of fiber-preserving symmetries (τ = τ(t)), a symmetry of SDEs can be
extended to a symmetry of the associated FP equation. The converse result holds only
for operators satisfying an additional condition. In one spatial dimension, symmetries of
a generic FP equation are known. The complete group classification of the linear (1 + 1)-
dimensional homogeneous second-order parabolic equation was performed by Lie [14]. A
modern treatment can be found in [1] (see also [15]). A number of papers are devoted
specifically to the symmetries of the FP equation in one spatial dimension [16–18]. There are
no general studies for higher dimensions. The existing results are limited to a special case of
Kramers’ equation for the diffusion matrix which is constant and degenerate [19], and the FP
equation with a constant and positive definite diffusion matrix [20]. Both papers are restricted
to FP equations in two spatial dimensions.

It should be noted that this paper deals with infinitesimal Lie group transformations which
preserve the form of SDEs. The reconstruction of finite transformations from infinitesimal
ones was discussed in [10, 12]. Generally, it is not guaranteed that the finite transformations,
which are recovered from infinitesimal transformations, transform solutions of SDEs into
another solutions.

This paper is organized as follows. In section 2 background information concerning
symmetries of SDEs is provided. We also characterize symmetry properties for systems of
SDEs which have diffusion matrices of full rank. Section 3 is devoted to the group classification
of a system of two SDEs. We comment on the use of symmetries for integrability of SDEs by
quadratures in section 4.

2. Systems of SDEs and symmetries

Let us consider a system of Itô SDEs,

dxi = fi(t, x) dt + giα(t, x) dWα(t), i = 1, . . . , n, α = 1, . . . , m, (2.1)

where fi(t, x) is a drift vector, giα(t, x) is a diffusion matrix and Wα(t) is a vector Wiener
process [21, 22]. Here and below we assume summation over repeated indexes. We restrict
ourselves to the case

rank{giα(t, x)} = n, (2.2)

i.e. the case when the diffusion matrix has full rank. In particular, this implies m � n.
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2.1. Determining equations

We will be interested in infinitesimal group transformations (near identity changes of variables)

t̄ = t̄ (t, x, a) ≈ t + τ(t, x)a, x̄i = x̄i (t, x, a) ≈ xi + ξi(t, x)a, (2.3)

which leave equations (2.1) and framework of Itô calculus invariant. Such transformations
can be represented by generating operators of the form

X = τ(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi

. (2.4)

The determining equations for admitted symmetries [9] are

∂ξi

∂t
+ fj

∂ξi

∂xj

− ξj

∂fi

∂xj

− τ
∂fi

∂t
− fi

∂τ

∂t
− fifj

∂τ

∂xj

− 1

2
figjαgkα

∂2τ

∂xj∂xk

+
1

2
gjαgkα

∂2ξi

∂xj ∂xk

= 0, (2.5)

gjα

∂ξi

∂xj

− ξk

∂giα

∂xk

− τ
∂giα

∂t
− giα

2

(
∂τ

∂t
+ fj

∂τ

∂xj

+
1

2
gjβgkβ

∂2τ

∂xj ∂xk

)
= 0, (2.6)

gjα

∂τ

∂xj

= 0. (2.7)

It is interesting to note that the determining equations are deterministic even though they
describe symmetries of a system of SDEs.

In the general case, when the functions fi(t, x) and giα(t, x) are arbitrary, the determining
equations (2.5)–(2.7) have no non-trivial solutions, i.e. there are no symmetries.

Under condition (2.2) the last set of determining equations (2.7) can be solved as

τ = τ(t). (2.8)

Therefore, the symmetries admitted by the system (2.1), (2.2) are fiber-preserving symmetries

X = τ(t)
∂

∂t
+ ξi(t, x)

∂

∂xi

(2.9)

that substantially simplify further consideration. In particular, we are restricted to equivalence
transformations

t̄ = t̄ (t), x̄ = x̄(t, x), t̄t �= 0, det

(
∂ x̄
∂x

)
�= 0, (2.10)

where the change of time is not random. According to the general result concerning the
random time change in Brownian motion [22], the Brownian motion is transformed as

dW̄ (t̄) =
√

dt̄ (t)

dt
dW(t). (2.11)

It should be noted that transformations (2.10) do not change the rank of the diffusion matrix. In
particular, if the original system of SDEs has a diffusion matrix of full rank, then the diffusion
matrix of the transformed system also has full rank.

Remark 2.1. Because the symmetries admitted by the system (2.1), (2.2) are fiber-preserving
symmetries (2.9), they form a Lie algebra. It was shown in [9] that symmetries of Stratonovich
systems always form Lie algebras. In a particular case τ = τ(t) the determining equations for
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corresponding Itô and Stratonovich systems are identical. Therefore, all results of this paper
established for Itô SDEs (2.1) are also valid for the corresponding Stratonovich SDEs:

dxi = hi(t, x) dt + giα(t, x) ◦ dWα(t), i = 1, . . . , n, α = 1, . . . , m (2.12)

with

hi = fi − 1

2
gkα

∂giα

∂xk

.

2.2. Symmetry properties

The considered systems have a bound on the dimension of the admitted symmetry group. We
assume that all functions fi(t, x) and giα(t, x), describing the SDEs, as well as coefficients
τ(t, x) and ξi(t, x) of the symmetry operators are analytic.

Theorem 2.2. The maximal dimension of a symmetry group admitted by the system of SDEs
(2.1), (2.2) is n + 2.

Proof. Let us write down a simplified version of the determining equations

∂ξi

∂t
+ fj

∂ξi

∂xj

− ξj

∂fi

∂xj

− τ
∂fi

∂t
− fi

∂τ

∂t
+

1

2
gjαgkα

∂2ξi

∂xj ∂xk

= 0, (2.13)

gjα

(
∂ξi

∂xj

− δij

2

∂τ

∂t

)
= ξk

∂giα

∂xk

+ τ
∂giα

∂t
, (2.14)

∂τ

∂xj

= 0, (2.15)

where δij is the Kronecker symbol. The set of equations (2.14) can be resolved as

∂ξi

∂xj

− δij

2

∂τ

∂t
= χij , χij ∈ span(τ, ξ). (2.16)

By span(τ, ξ) we mean functions which are linear in τ and ξ = {ξk}nk=0 with coefficients
depending on some functions of t and x. If the system (2.14) is overdetermined, there will be
additional constraints.

From (2.16) we obtain

∂2ξi

∂xj ∂xk

= ϕijk, ϕijk ∈ span

(
τ,

∂τ

∂t
, ξ

)
. (2.17)

Substitution of (2.16) and (2.17) into equations (2.13) provides us with

∂ξi

∂t
= ϕi0, ϕi0 ∈ span

(
τ,

∂τ

∂t
, ξ

)
. (2.18)

Finally, from (2.15), (2.16) and (2.18) we conclude that all derivatives of τ and ξ are
linear homogeneous functions of τ , ξ and τt . The total number of unconstrained derivatives
is at most n + 2. Thus, the space of the solutions is at most n + 2 dimensional. A detailed
justification of this reasoning can be found in section 48 of [23].

Let us show that systems

dxi = Cidt + Ciα dWα(t), i = 1, . . . , n, α = 1, . . . , m (2.19)

4
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with constant drift and diffusion coefficients admit symmetry groups of maximal dimension
n + 2. We recall that equations (2.15) give us τ = τ(t). In the case of a constant diffusion
matrix equations (2.14) take the form

Cjα

(
∂ξi

∂xj

− δij

2
τ ′(t)

)
= 0,

and can be solved as

ξi = 1
2τ ′(t)xi + Ai(t),

where Ai(t) are the arbitrary functions. Substitution into the set of equations (2.13) leads to
1
2τ ′′(t)xi + A′

i (t) − 1
2Ciτ

′(t) = 0.

The solution is

τ = αt + β, ξi = α

2
(xi + Cit) + γi,

where α, β and γi are arbitrary constants. The symmetry group is given by the operators

X = ∂

∂t
, Yi = ∂

∂xi

, i = 1, . . . , n, Z = 2t
∂

∂t
+ (xi + Cit)

∂

∂xi

. (2.20)

Let us note that these operators have the algebra structure

[X, Yi] = 0, [X,Z] = 2X + CiYi, [Yi, Z] = Yi. �

By the change of variables x̄i = xi − Cit we can always remove the drift terms. We
obtain the system

dx̄i = Ciα dWα(t), i = 1, . . . , n, α = 1, . . . , m. (2.21)

For m = n this system can be split into n separate equations of Brownian motion

dx̄i = dWi(t), i = 1, . . . , n,

by an appropriate linear transformation of dependent variables.
Similarly, we can establish a bound on the dimension of the admitted symmetry group

acting in the space of dependent variables.

Theorem 2.3. Let us consider group transformations generated by the operators of the form

X = ξi(t, x)
∂

∂xi

. (2.22)

The maximal dimension of such a symmetry group admitted by the system of SDEs (2.1), (2.2)
is n.

To facilitate Lie group classifications we will show that the system (2.1), (2.2) cannot
admit symmetry operators whose coefficients are proportional to a nonconstant coefficient of
proportionality. It can be done with the help of first integrals.

Definition 2.4. A quantity I (t, x) is a first integral of a system of SDEs (2.1) if it remains
constant on the solutions of SDEs.

The Itô differential of the first integral

dI =
(

∂I

∂t
+ fj

∂I

∂xj

+
1

2
gjαgkα

∂2I

∂xj ∂xk

)
dt + gjα

∂I

∂xj

dWα(t) = 0 (2.23)

leads to partial differential equations

5
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D0(I ) = ∂I

∂t
+ fj

∂I

∂xj

+
1

2
gjαgkα

∂2I

∂xj ∂xk

= 0, (2.24)

Dα(I) = gjα

∂I

∂xj

= 0, α = 1, . . . , m, (2.25)

which a conserved quantity should satisfy.

Proposition 2.5. A system of SDEs (2.1) (2.2) has no first integrals.

Proof. Under condition (2.2) the set of equations (2.25) has only time-dependent solutions
I (t). Substituting I (t) into equation (2.24), we obtain I ≡ const. �

Relations of first integrals and symmetries of SDEs were investigated in a number of
papers [4–6, 9]. We will rely on the following property.

Theorem 2.6. A system of SDEs (2.1) with a non-zero diffusion matrix admits two linearly
connected symmetries

X1 = τ(t, x)
∂

∂t
+ ξi(t, x)

∂

∂xi

and

X2 = I (t, x)τ (t, x)
∂

∂t
+ I (t, x)ξi(t, x)

∂

∂xi

if and only if the function I (t, x) is a first integral of the system.

Proof. Let us show that if the system (2.1) admits the symmetries X1 and X2, then I (t, x) is a
first integral. The determining equations (2.5)–(2.7) hold for both operators X1 and X2. From
these sets of equations we obtain

(ξi − fiτ )D0(I ) + (Dα(ξi) − fiDα(τ))Dα(I ) = 0, (2.26)

ξiDα(I ) − giα

2
(τD0(I ) + Dβ(τ)Dβ(I)) = 0, (2.27)

τDα(I) = 0. (2.28)

If τ �= 0, we obtain equations (2.25) from (2.28). Then, since there exists at least one
element gjα �= 0, we obtain equation (2.24) from (2.27). The last set of equations (2.26) is
not required.

If τ = 0, there exists at least one coefficient ξi �= 0. Equations (2.28) hold identically.
We obtain equations (2.25) from set (2.27) and equation (2.24) from set (2.26).

Inversely, it is easy to show that if the operator X1 satisfies the determining equations and
I (t, x) is a first integral, then the operator X2 also satisfies the determining equations, i.e. it is
also a symmetry of the system of SDEs. �

Therefore, if the system (2.1) has at least one symmetry and one first integral, it admits
an infinite-dimensional symmetry group.

Corollary 2.7. A system of SDEs (2.1), (2.2) does not admit linearly connected symmetry
operators (symmetry operators whose coefficients are proportional to a nonconstant coefficient
of proportionality).

Proof. By proposition 2.5 the system (2.1), (2.2) does not possess first integrals. It follows
from theorem 2.6 that it cannot admit linearly connected symmetries. �

6
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In the following sections we will construct a group classification using realizations of
real Lie algebras by non-vanishing vector fields. Corollary 2.7 will be very useful to discard
realizations which cannot be admitted as symmetries.

3. Group classification of a system of two SDEs

In this section we consider a particular case of the system (2.1), (2.2) corresponding to n = 2,
namely the system

dx1 = f1(t, x1, x2) dt + g1α(t, x1, x2) dWα(t),

dx2 = f2(t, x1, x2) dt + g2α(t, x1, x2) dWα(t),
α = 1, . . . , m, (3.1)

satisfying the condition

rank

(
g11 g12 . . . g1m

g21 g22 . . . g2m

)
= 2. (3.2)

Condition (3.2) requires m � 2.
From section 2 it is known that the system (3.1), (3.2) can admit only fiber-preserving

symmetries

X = τ(t)
∂

∂t
+ ξ1(t, x1, x2)

∂

∂x1
+ ξ2(t, x1, x2)

∂

∂x2
. (3.3)

The maximal dimension of the admitted symmetry group is 4. Equivalence transformations
(2.10) take the form

t̄ = t̄ (t), x̄1 = x̄1(t, x1, x2), x̄2 = x̄2(t, x1, x2),

t̄t �= 0, det
∂(x̄1, x̄2)

∂(x1, x2)
�= 0.

(3.4)

To obtain a group classification it is convenient to start from Lie algebras. Given their
structure constants, we find non-vanishing vector fields satisfying the commutator relations.
Thus, we find all possible realizations of the Lie algebras. Two realizations of the same Lie
algebra are considered equivalent if there exists an equivalence transformation of the form
(3.4) mapping one of the realizations into the other.

We will construct non-equivalent realizations of one-, two- and three-dimensional real
Lie algebras by non-vanishing vector fields (3.3). Such realizations were considered in [24] to
carry out the group classification of a nonlinear heat conductivity equation. Since the authors
do not provide a list of all realizations of Lie algebras (they discard the realizations which
cannot be admitted by the nonlinear PDE already in the two-dimensional case) we repeat
the construction procedure. It is convenient to follow the description of real Lie algebras
given in [25]. To make the paper self-sufficient we provide construction of one- and two-
dimensional realizations and comment on the construction of three-dimensional realizations.
The procedure can be continued for Lie algebras of dimension four. However, it turns out
that for our purpose it is better to take systems invariant with respect to three-dimensional
symmetry groups and investigate them for additional symmetries by direct computation.

3.1. One-dimensional symmetry groups

A one-dimensional algebra is represented by operator (3.3). By change of variables (3.4) it
can be brought to the form

X1 = ∂

∂t
if τ(t) �= 0 (3.5)

7
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Table 1. Realizations of one- and two-dimensional real Lie algebras by vector fields (3.3) up to
equivalence transformations (3.4).

Rank of
Algebra realization N Realization

A1 1 1 X1 = ∂

∂t

2 X1 = ∂

∂x1

2A1 2 1 X1 = ∂

∂t
, X2 = ∂

∂x1

[X1, X2] = 0 2 X1 = ∂

∂x1
, X2 = ∂

∂x2

1 3 X1 = ∂

∂x1
, X2 = t ∂

∂x1

4 X1 = ∂

∂x1
, X2 = x2

∂

∂x1

A2.1 2 1 X1 = ∂

∂t
, X2 = t ∂

∂t
+ x1

∂

∂x1

[X1, X2] = X1 2 X1 = ∂

∂x1
, X2 = t ∂

∂t
+ x1

∂

∂x1

3 X1 = ∂

∂x1
, X2 = x1

∂

∂x1
+ x2

∂

∂x2

1 4 X1 = ∂

∂t
, X2 = t ∂

∂t

5 X1 = ∂

∂x1
, X2 = x1

∂

∂x1

or

X1 = ∂

∂x1
if τ(t) = 0. (3.6)

We present these non-equivalent realizations in table 1 and the corresponding invariant system
of two SDEs in table 2. It should be noted that table 2 contains the most general forms of the
invariant systems of SDEs, which allow simplifying transformations.

3.2. Two-dimensional symmetry groups

Given a realization of a two-dimensional Lie algebra by two vector fields (3.3), we can
transform one of these vector fields to the form (3.5) or (3.6).

Let us start with the case when X1 is operator (3.5). The possible equivalence
transformations are restricted to

t̄ = t + α, x̄1 = x̄1(x1, x2), x̄2 = x̄2(x1, x2), det
∂(x̄1, x̄2)

∂(x1, x2)
�= 0, (3.7)

where α is an arbitrary constant. There are two possibilities for the second operator X2 of the
two-dimensional Lie algebra.

(1) [X1, X2] = 0
In this case the most general form of the second operator is

X2 = C1
∂

∂t
+ ξ1(x1, x2)

∂

∂x1
+ ξ2(x1, x2)

∂

∂x2
,

where ξ1(x1, x2) and ξ2(x1, x2) are the arbitrary functions. The constant C1 can be
removed by changing the second operator X2 → X2 − C1X1. By the change of variables
(3.7) this operator can be simplified as

X2 = ∂

∂x1
.

8
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Table 2. Lie group classification of systems of two SDEs admitting one- and two-dimensional
symmetry groups. fi and giα are the arbitrary functions of their arguments such that there exist α

and β for which g1αg2β − g1βg2α �≡ 0. The table contains the most general forms of the invariant
systems of SDEs, which allow further simplification by the equivalence transformations.

Algebra Realization System of SDEs

A1 X1 = ∂

∂t

dx1 = f1(x1, x2) dt + g1α(x1, x2) dWα(t)

dx2 = f2(x1, x2) dt + g2α(x1, x2) dWα(t)

X1 = ∂

∂x1

dx1 = f1(t, x2) dt + g1α(t, x2) dWα(t)

dx2 = f2(t, x2) dt + g2α(t, x2) dWα(t)

2A1

[X1, X2] = 0
X1 = ∂

∂t
, X2 = ∂

∂x1

dx1 = f1(x2) dt + g1α(x2) dWα(t)

dx2 = f2(x2) dt + g2α(x2) dWα(t)

X1 = ∂

∂x1
, X2 = ∂

∂x2

dx1 = f1(t) dt + g1α(t) dWα(t)

dx2 = f2(t) dt + g2α(t) dWα(t)

A2.1

[X1, X2] = X1
X1 = ∂

∂t
, X2 = t ∂

∂t
+ x1

∂

∂x1

dx1 = f1(x2) dt + g1α(x2)
√

x1 dWα(t)

dx2 = f2(x2)

x1
dt + g2α(x2)√

x1
dWα(t)

X1 = ∂

∂x1
, X2 = t ∂

∂t
+ x1

∂

∂x1

dx1 = f1(x2) dt + g1α(x2)
√

t dWα(t)

dx2 = f2(x2)

t
dt + g2α(x2)√

t
dWα(t)

X1 = ∂

∂x1
, X2 = x1

∂

∂x1
+ x2

∂

∂x2

dx1 = f1(t)x2 dt + g1α(t)x2 dWα(t)

dx2 = f2(t)x2 dt + g2α(t)x2 dWα(t)

(2) [X1, X2] = X1

In this case we obtain

X2 = (t + C1)
∂

∂t
+ ξ1(x1, x2)

∂

∂x1
+ ξ2(x1, x2)

∂

∂x2
.

An arbitrary constant C1 can be discarded. Then, the operator can be brought to the form

X2 = t
∂

∂t
, if ξ1(x1, x2) = 0 and ξ1(x1, x2) = 0

or

X2 = t
∂

∂t
+ x1

∂

∂x1
, if ξ1(x1, x2) �= 0 or ξ1(x1, x2) �= 0.

We repeat this procedure for the other realization X1, which is given by operator (3.6). It
is preserved by equivalence transformations

t̄ = t̄ (t), x̄1 = x1 + f (t, x2), x̄2 = g(t, x2), t̄t �= 0, gx2 �= 0. (3.8)

(1) For [X1, X2] = 0 we obtain

X2 = τ(t)
∂

∂t
+ ξ1(t, x2)

∂

∂x1
+ ξ2(t, x2)

∂

∂x2
,

which can be simplified to the form

X2 = ∂

∂t
if τ(t) �= 0,

X2 = ∂

∂x2
if τ(t) = 0 and ξ2(t, x2) �= 0,

X2 = x2
∂

∂x1
or X2 = t

∂

∂x1
if τ(t) = 0 and ξ2(t, x2) = 0.

9



J. Phys. A: Math. Theor. 43 (2010) 245201 R Kozlov

(2) For [X1, X2] = X1 the operator X2 has the form

X2 = τ(t)
∂

∂t
+ (x1 + ξ1(t, x2))

∂

∂x1
+ ξ2(t, x2)

∂

∂x2
.

It can transformed to a simpler form

X2 = t
∂

∂t
+ x1

∂

∂x1
if τ(t) �= 0,

X2 = x1
∂

∂x1
+ x2

∂

∂x2
if τ(t) = 0 and ξ2(t, x2) �= 0

or

X2 = x1
∂

∂x1
if τ(t) = 0 and ξ2(t, x2) = 0.

The non-equivalent realizations obtained are summarized in table 1. It follows from
corollary 2.7 that linearly connected operators cannot be admitted by the systems (3.1), (3.2).
This excludes four out of nine realizations of two-dimensional Lie algebras. The invariant
systems of two SDEs, corresponding to the other realizations, are given in table 2.

3.3. Three-dimensional symmetry groups

The three-dimensional Lie algebras can be split into solvable and unsolvable. The solvable
algebras and algebra

sl(2, R) : [X1, X2] = X1, [X2, X3] = X3, [X1, X3] = 2X2 (3.9)

contain two-dimensional subalgebras. Their realizations can be constructed with the help of
realizations of two-dimensional algebras. This procedure is similar to that outlined in the
previous point, where realizations of two-dimensional algebras were obtained with the help of
those for one-dimensional algebras. It turns out that there are many realizations which cannot
be symmetries of systems (3.1), (3.2). In table 3 we provide only realizations which can
be admitted by the system of two SDEs and the corresponding invariant systems. The table
presents the most general forms of SDEs, which allow further simplification by equivalence
transformations. Note that the table contains only non-zero commutators.

Remark 3.1. Let us note that the realizations

X1 = ∂

∂t
, X2 = ∂

∂x1
and X1 = ∂

∂x1
, X2 = ∂

∂t

are equivalent as realizations of an Abelian two-dimensional algebra. However, they are not
equivalent when we construct realizations of three-dimensional algebras built on the two-
dimensional ones. See, for example, the first and second realizations of algebra A2.1 ⊕ A1 or
Aa

3.4 in table 3.

Remark 3.2. Two realizations of three-dimensional algebras which provide invariant systems
of SDEs are not present in table 3. These cases are a realization of the Abelian Lie algebra
3A1, given by the operators

X1 = ∂

∂t
, X2 = ∂

∂x1
, X3 = ∂

∂x2
, (3.10)

and a realization of the algebra

A3.3: [X1, X2] = 0, [X1, X3] = X1, [X2, X3] = X2,

10
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Table 3. Lie group classification of systems of two SDEs admitting three-dimensional symmetry
groups. Ci and Ciα are the constants such that there exist α and β for which C1αC2β −C1βC2α �= 0.
The table contains the most general forms of the invariant systems of SDEs, which allow further
simplification by the equivalence transformations.

Algebra Realization System of SDEs

A2.1 ⊕ A1

[X1, X2] = X1

X1 = ∂

∂t
, X2 = t ∂

∂t
+ x2

∂

∂x2
,

X3 = ∂

∂x1

dx1 = C1
x2

dt + C1α√
x2

dWα(t)

dx2 = C2 dt + C2α

√
x2 dWα(t)

X1 = ∂

∂x1
, X2 = x1

∂

∂x1
+ x2

∂

∂x2
,

X3 = ∂

∂t

dx1 = C1x2 dt + C1αx2 dWα(t)

dx2 = C2x2 dt + C2αx2 dWα(t)

X1 = ∂

∂x1
, X2 = t ∂

∂t
+ x1

∂

∂x1
,

X3 = ∂

∂x2

dx1 = C1dt + C1α

√
t dWα(t)

dx2 = C2
t

dt + C2α√
t

dWα(t)

A3.1

[X2, X3] = X1

X1 = ∂

∂x1
, X2 = ∂

∂t
,

X3 = t ∂

∂x1
+ ∂

∂x2

dx1 = (x2 + C1) dt + C1α dWα(t)

dx2 = C2 dt + C2α dWα(t)

X1 = ∂

∂x1
, X2 = ∂

∂x2
,

X3 = ∂

∂t
+ x2

∂

∂x1

dx1 = (C2t + C1) dt

+ (C2αt + C1α) dWα(t)

dx2 = C2 dt + C2α dWα(t)

A3.2

[X1, X3] = X1,

[X2, X3] = X1 + X2

X1 = ∂

∂x1
, X2 = ∂

∂t
,

X3 = t ∂

∂t
+ (t + x1)

∂

∂x1
+ ∂

∂x2

dx1 = (x2 + C1) dt + C1α ex2/2 dWα(t)

dx2 = C2 e−x2 dt + C2α e−x2/2 dWα(t)

X1 = ∂

∂x1
, X2 = ∂

∂x2
,

X3 = ∂

∂t
+ (x1 + x2)

∂

∂x1
+ x2

∂

∂x2

dx1 = (C2t + C1) et dt

+ (C2αt + C1α) et dWα(t)

dx2 = C2 et dt + C2α et dWα(t)

A3.3

[X1, X3] = X1,

[X2, X3] = X2

X1 = ∂

∂t
, X2 = ∂

∂x1
,

X3 = t ∂

∂t
+ x1

∂

∂x1
+ ∂

∂x2

dx1 = C1dt + C1α ex2/2 dWα(t)

dx2 = C2 e−x2 dt + C2α e−x2/2 dWα(t)

Aa
3.4,

|a| � 1, a �= 0, 1
[X1, X3] = X1,

[X2, X3] = aX2

X1 = ∂

∂t
, X2 = ∂

∂x1
,

X3 = t ∂

∂t
+ ax1

∂

∂x1
+ ∂

∂x2

dx1 = C1e(a−1)x2 dt

+ C1α e(a−1/2)x2 dWα(t)

dx2 = C2 e−x2 dt + C2α e−x2/2 dWα(t)

X1 = ∂

∂x1
, X2 = ∂

∂t
,

X3 = at ∂

∂t
+ x1

∂

∂x1
+ ∂

∂x2

dx1 = C1 e(1−a)x2 dt

+ C1α e(1−a/2)x2 dWα(t)

dx2 = C2 e−ax2 dt + C2α e−ax2/2 dWα(t)

X1 = ∂

∂x1
, X2 = ∂

∂x2
,

X3 = ∂

∂t
+ x1

∂

∂x1
+ ax2

∂

∂x2

dx1 = C1 et dt + C1α et dWα(t)

dx2 = C2 eat dt + C2α eat dWα(t)

Ab
3.5, b � 0

[X1, X3] = bX1 − X2,

[X2, X3] = X1 + bX2

X1 = ∂

∂x1
, X2 = ∂

∂x2
,

X3 = ∂

∂t
+ (bx1 + x2)

∂

∂x1

+ (−x1 + bx2)
∂

∂x2

dx1 = (C1 sin t + C2 cos t) ebt dt

+ (C1α sin t + C2α cos t) ebt dWα(t)

dx2 = (C1 cos t − C2 sin t) ebt dt

+ (C1α cos t − C2α sin t) ebt dWα(t)

sl(2, R)

[X1, X2] = X1,

[X2, X3] = X3,

[X1, X3] = 2X2

X1 = ∂

∂t
, X2 = t ∂

∂t
+ x1

∂

∂x1
,

X3 = t2 ∂

∂t
+ 2tx1

∂

∂x1
+ x1

∂

∂x2

dx1 = (2x2 + C1) dt + C1α

√
x1 dWα(t)

dx2 = x2
2 +C1x2+C2

x1
dt + C1αx2+C2α√

x1
dWα(t)

given by the operators

X1 = ∂

∂x1
, X2 = ∂

∂x2
, X3 = 2t

∂

∂t
+ x1

∂

∂x1
+ x2

∂

∂x2
. (3.11)

11
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In both cases we obtain systems of SDEs which actually admit four symmetries. These systems
are equivalent to the system (3.13). Symmetry operators (3.10) and (3.11) are subgroups of
operators (3.14).

The other unsolvable three-dimensional algebra

so(3): [X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2 (3.12)

requires a special consideration.

Proposition 3.3 [24]. Within the equivalence class (3.4), there exists only one realization of
the algebra so(3) by operators of the form (3.3), which can be chosen as

X1 = ∂

∂x1
, X2 = −sin x1 tan x2

∂

∂x1
− cos x1

∂

∂x2
,

X3 = − cos x1 tan x2
∂

∂x1
+ sin x1

∂

∂x2
.

Direct verification shows that there is no invariant system of two SDEs for this set of
operators.

3.4. Four-dimensional symmetry groups

According to theorem 2.2 a symmetry group admitted by the system (3.1), (3.2) is at most four
dimensional. It is possible to avoid construction of realizations of all four-dimensional Lie
algebras if we take into account that any four-dimensional algebra contains a three-dimensional
subalgebra. We can take systems of SDEs admitting three symmetries and investigate them for
an additional symmetry by direct computation. There is only one (up to equivalence) invariant
system of two SDEs which admits four symmetries. It is the system

dx1 = C1α dWα(t), dx2 = C2α dWα(t), (3.13)

which admits symmetries

X1 = ∂

∂t
, X2 = ∂

∂x1
, X3 = ∂

∂x2
, X4 = 2t

∂

∂t
+ x1

∂

∂x1
+ x2

∂

∂x2
. (3.14)

These operators correspond to a particular case of algebra A4.5 [25], which has non-zero
commutators

[X1, X4] = 2X1, [X2, X4] = X2, [X3, X4] = X3.

For m = 2 this system can be split into two separate equation of Brownian motion

dx1 = dW1(t), dx2 = dW2(t)

by an appropriate linear transformation of the dependent variables.
The results of this section can be summed up as a theorem.

Theorem 3.4. Let a system of SDEs (3.1), (3.2) be invariant under the Lie group G of local
point transformations with the Lie algebra realized by the vector fields X1, . . . , Xk of the form
(3.3). Then, k = 0, 1, 2, 3 or 4 and

rank(X1, . . . , Xk) = min(k, 3).

Probably, the theorem can be extended to a more general case of systems of SDEs (2.1),
(2.2).

12



J. Phys. A: Math. Theor. 43 (2010) 245201 R Kozlov

4. Integrability by quadratures

It is known (see, for example, [3]) that knowledge of an r-parameter solvable group of
symmetries allows us to reduce the order of a system of first-order ODEs by r. An analogous
result is valid for the system of SDEs. However, in the general case we can use only symmetries
acting in the space of the dependent variables. This can be illustrated for a scalar SDE.

Example 4.1. Let us consider a SDE

dx = f (t, x) dt + g(t, x) dW(t), g(t, x) �≡ 0. (4.1)

In [13] it was shown that if equation (4.1) admits a symmetry

X = ξ(t, x)
∂

∂x
,

it can be transformed into the form

dx = f (t) dt + g(t) dW(t),

which can be solved as

x(t) = x(t0) +
∫ t

t0

f (s) ds +
∫ t

t0

g(s) dW(s).

However, if the admitted symmetry is

X = τ(t)
∂

∂t
+ ξ(t, x)

∂

∂x
, τ (t) �≡ 0,

then the equation can be brought to the form

dx = f (x) dt + g(x) dW(t),

which is not integrable in the general case.

The classical results concerning the first-order system of ODEs take the following form.
It is also valid for the system which does not satisfy rank restriction (2.2).

Theorem 4.1. Suppose the system (2.1) admits a symmetry of the form

X = ξi(t, x)
∂

∂xi

, (4.2)

then there exists a non-degenerate change of variables x̄ = x̄(t, x) which transforms the
system into the form

dx̄i = f̄ i(t, x̄1, . . . , x̄n−1) dt + ḡiα(t, x̄1, . . . , x̄n−1) dWα(t). (4.3)

Thus, the system gets reduced to a system of n − 1 SDEs for x̄1, . . . , x̄n−1. The solution of the
last equation can be given by quadratures

x̄n(t) = x̄n(t0) +
∫ t

t0

f̄ i(s, x̄1(s), . . . , x̄n−1(s)) ds +
∫ t

t0

ḡiα(s, x̄1(s), . . . , x̄n−1(s)) dWα(s).

(4.4)

Theorem 4.2. Suppose the system (2.1) admits an r-parameter solvable group of symmetries,

Xk = ξk
i (t, x)

∂

∂xi

, k = 1, . . . , r, (4.5)

acting regularly with r-dimensional orbits. Then the solution can be obtained by quadratures
from the solution of a reduced system of order n−r. If the system (2.1) admits an n-parameter
solvable group, its general solution can be found by quadratures.

13
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A number of examples for integration of scalar SDEs with a one-dimensional Brownian
motion were given in [13]. Let us consider a system of two SDEs in detail.

In the space of two variables (x1, x2) two-dimensional Lie algebras have five non-
equivalent realizations by vector fields of the form

X = ξ1(t, x1, x2)
∂

∂x1
+ ξ2(t, x1, x2)

∂

∂x2
, (4.6)

which are given in table 1. According to corollary 2.7 three realizations, which are given by
linearly connected operators, cannot be symmetries of the system (3.1), (3.2). Thus, we obtain
the system

dx1 = f1(t) dt + g1α(t) dWα(t),

dx2 = f2(t) dt + g2α(t) dWα(t),
(4.7)

which is invariant with respect to the operators

X1 = ∂

∂x1
, X2 = ∂

∂x2
(4.8)

and the system

dx1 = f1(t)x2 dt + g1α(t)x2 dWα(t),

dx2 = f2(t)x2 dt + g2α(t)x2 dWα(t),
(4.9)

which admits the symmetries

X1 = ∂

∂x1
, X1 = x1

∂

∂x1
+ x2

∂

∂x2
. (4.10)

It is easy to see that these systems are integrable by quadratures. The equations of the
system (4.7) can be integrated independently. In the system (4.9) we can integrate the second
equation as

x2(t) = x2(t0) exp

(∫ t

t0

(
f2(s) − 1

2
g2

2α(s)

)
ds +

∫ t

t0

g2α(s) dWα(s)

)

and use this solution to integrate the first equation.

Example 4.2. Let us consider the system

dx1 = (a1 + b1x1 + c1x2) dt + C11 dW1(t) + C12 dW2(t),

dx2 = (a2 + b2x1 + c2x2) dt + C21 dW1(t) + C22 dW2(t),
(4.11)

satisfying the full rank condition (3.2). We will look for symmetries of the form (4.6).
Resolving determining equations (2.6)–(2.7), we obtain

ξ1 = ξ1(t), ξ2 = ξ2(t).

Substitution into the last set (2.5) gives

ξ ′
1(t) = b1ξ1(t) + c1ξ2(t), ξ ′

2(t) = b2ξ1(t) + c2ξ2(t). (4.12)

The solution of the system is two dimensional. By theorem 4.2 the system (4.11) is integrable
by quadratures. The system can be transformed to the form (4.7) because the symmetry group
is Abelian. The solution of the system (4.12) can always be given as(

ξ1(t)

ξ2(t)

)
= α

(
A1(t)

B1(t)

)
+ β

(
A2(t)

B2(t)

)
.

14



J. Phys. A: Math. Theor. 43 (2010) 245201 R Kozlov

We will not provide detailed expressions for the functions A1(t), B1(t), A2(t) and B2(t)

because it would require one to consider three deferent cases for roots of the characteristic
polynomial. The admitted symmetries

X1 = A1(t)
∂

∂x1
+ B1(t)

∂

∂x2
, X2 = A2(t)

∂

∂x1
+ B2(t)

∂

∂x2

can be transformed to the form (4.8) by the change of variables

x̄1 = B2(t)x1 − A2(t)x2

�
, x̄2 = −B1(t)x1 + A1(t)x2

�
,

where

� = A1(t)B2(t) − A2(t)B1(t).

The transformation brings the system (4.11) to the form

dx̄1 = f1(t) dt + g11(t) dW1(t) + g12(t) dW2(t),

dx̄2 = f2(t) dt + g21(t) dW1(t) + g22(t) dW2(t)

with

f1(t) = B2(t)a1 − A2(t)a2

�
, f2(t) = −B1(t)a1 + A1(t)a2

�
,

g11(t) = B2(t)C11 − A2(t)C21

�
, g21(t) = −B1(t)C11 + A1(t)C21

�
,

g12(t) = B2(t)C12 − A2(t)C22

�
, g22(t) = −B1(t)C12 + A1(t)C22

�
.

The subsequent integration is straightforward.

Remark 4.3. A wider family of SDEs can be integrated if we consider realizations of SDEs
by decoupled systems [26, 27]. Since this integration method goes beyond transformations
(2.10), it is not considered in this paper. It is worth mentioning that besides quadratures there
are other means to present closed-form solutions of SDEs [28].

Although there are more powerful methods for integration of SDEs based on decoupling,
symmetry methods suggest changes of variables which lead to the simplification of systems
of SDEs. In many cases it can be sufficient for integration.
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[9] Ünal G 2003 Symmetries of Itô and Stratonovich dynamical systems and their conserved quantities Nonlinear

Dyn. 32 417–26
[10] Fredericks E and Mahomed F M 2007 Symmetries of first-order stochastic ordinary differential equations

revisited Math. Methods Appl. Sci. 30 2013–25

15

http://dx.doi.org/10.1016/0375-9601(94)90150-3
http://dx.doi.org/10.1088/0305-4470/27/20/004
http://dx.doi.org/10.1088/0305-4470/28/22/012
http://dx.doi.org/10.1088/0305-4470/32/48/310
http://dx.doi.org/10.1088/0305-4470/34/1/314
http://dx.doi.org/10.1023/A:1025669920594
http://dx.doi.org/10.1002/mma.942


J. Phys. A: Math. Theor. 43 (2010) 245201 R Kozlov

[11] Srihirun B, Meleshko S and Schulz E 2007 On the definition of an admitted Lie group for stochastic differential
equations Commun. Nonlinear Sci. Numer. Simul. 12 1379–89

[12] Fredericks E and Mahomed F M 2008 A formal approach for handling Lie point symmetries of scalar first-order
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